IV Semester M.Sc. Examination, June 2015 (NS) CHEMISTRY C-404 : Spectroscopy – III (Common to IC/PC/AC)

Time : 3 Hours

Instruction : Answer Q. No. 1 and any five of the remaining.

- 1. Answer any ten of the following :
 - a) How is the possibility of NO_2 being linear ruled out on the basis of IR data?
 - b) The IR spectrum of KrF_2 has bands at 233 and 588 cm⁻¹, the Raman spectrum displays a single band at 499 cm⁻¹. Give the structure of KrF_2 .
 - c) The C (1s) binding energy is higher in CO₂ than in CO, but the O (1s) binding energy is lower. Account for these observations ?
 - d) Obtain an expression for the calculation of energy for the conversion of a molecule into its ion (M \rightarrow M⁺) in PES.
 - e) Predict and sketch 31 P NMR spectrum of HPO(OH)₂ and H₂PO(OH) assuming J_{P-OH} to be negligible.
 - f) The ¹⁹F NMR spectra of equimolar quantities of TiF_6^{2-} and TiF_4 in ethanol shows two peaks with intensity ratio 4 : 1. Explain with its structure.
 - g) Calculate the g_1 and g_{11} values for a CuC(1) complex if the resonances occurred at 3214 and 3071 G respectively and for the reference at 3286 G. g value for the reference is 2.0037.
 - h) How many ESR lines are expected in the spectrum of 'CD₃ radical ? What are their relative intensities ?
 - i) The Mössbauer spectrum of $\rm Fe(CO)_5$ shows splitting but that of $\rm K_4Fe(CN)_6$ doesn't. Why ?
 - j) How many resonances are expected in the NQR spectrum of nuclei with I = $\frac{5}{2}$ when $\eta = 0$? Sketch the energy levels.
 - k) The ³⁵Cl e²Q₉ of KCl and FCl are 0.04 and –146.0 respectively. Account for this variation.
 - I) What is the significance of EXAFS?

PG – 112

(10×2=20)

Max. Marks: 80

- 2. a) Explain how are the following distinguished using IR spectra :
 - i) S- and N- bonded thiocyanate complexes.
 - ii) nitro- and nitrite complexes.
 - b) What differences in the number of bands and frequencies are expected between C – O absorptions of the following : acetate ion, acetic acid, silver acetate and acetate bound to zinc as a bidentate ligand.
 - c) How does the critical absorption edge arise ? Point out its significance.

(4+5+3=12)

- 3. a) What is resonance Raman effect ? Discuss the advantages of resonance Raman spectrum over normal Raman spectrum.
 - b) How does inverse Raman effect arise ? How does it differ from stimulated Raman effect ?
 - c) Sketch the photoelectron spectrum of N₂- molecule and explain the observed pattern. (5+3+4=12)
- 4. a) The photo-ionization of F_2 by He(1) produces F_2^+ . Explain why the intensity of $\upsilon = 0 \rightarrow 2$ transition is stronger than that of $0 \rightarrow 0$ transition.
 - b) What is Auger process ? What information can be obtained from an Auger spectrum ?
 - c) How does a photo acoustic spectrum arise ? Mention any one application. (5+4+3=12)
- 5. a) In the ¹H NMR spectral studies of HIrCl₂(Et₃P)₃ one isomer shows only one coupling constant (15Hz) whereas the other isomer shows two coupling constants (19 and 163 Hz). Explain.
 - b) What are the possible structures of CIF₃? How are these possibilities resolved by using ¹⁹F NMR spectrum ? Explain.
 - c) Predict the ³¹P NMR spectra of fac– and mer [RhCl₃(PPh₃)₃] and explain the patterns.
 (4+4+4=12)

- 6. a) What is zero-field splitting ? How does it arise ? Explain its consequences in the ESR spectrum of a d^2 ion.
 - b) How does anisotropy arise in 'g' values ? Explain.
 - c) Calculate the magnetic field at which the resonance occurs if the 'g' value of the benzene radical anion is 2.0025 and the ESR spectrometer is operating at 9302 MHz. (h = 6.626×10^{-34} Js, $\beta = 9.2741 \times 10^{-24}$ J T⁻¹). (5+4+3=12)
- 7. a) How are the following distinguished by Mössbauer spectroscopy?
 - i) SnCl₂ and SnCl₄
 - ii) $K_2[Fe(CN)_5 (NH_3)]$ and $FeCl_3.6H_2O$.
 - b) How are recoillers emission and resonant reabsorption of γ-rays achieved in Mössbauer spectroscopy ?
 - c) Outline the principles of NQR spectroscopy and explain its importance in distinguishing ionic and covalent bonds. (4+4+4=12)